Publications

Papers describing the biological model, mathematics, performance and validation of STRmix™:


[1]D.A. Taylor, J.-A. Bright, J. S. Buckleton, The interpretation of single source and mixed DNA profiles. Forensic Science International: Genetics. 2013; 7(5): 516-528.

[2]J.-A. Bright, D.A. Taylor, J. M. Curran, J. S. Buckleton, Developing allelic and stutter peak height models for a continuous method of DNA interpretation.  Forensic Science International: Genetics. 2013; 7(2): 296-304.

[3]J.-A. Bright, D.A. Taylor, J. Curran, J.S. Buckleton, Degradation of forensic DNA profiles, Australian Journal of Forensic Sciences. 2013 45(4): 445-449.

[4]J.-A. Bright, D.A. Taylor, J. M. Curran, J. S. Buckleton, Searching mixed DNA profiles directly against profile databases. Forensic Science International: Genetics. 2014; 9: 102-110.

[5]D.A. Taylor, Using continuous DNA interpretation methods to revisit likelihood ratio behaviour.Forensic Science International: Genetics. 2014; 11: 144-153.

[6]J.-A. Bright, J.M. Curran and J.S. Buckleton, The effect of the uncertainty in the number of contributors to mixed DNA profiles on profile interpretation. Forensic Science International: Genetics. 2014; 12: 208-214.

[7]J.-A. Bright, I.W. Evett, D.A. Taylor, J.M. Curran and J.S. Buckleton, A series of recommended tests when validating probabilistic DNA profile interpretation software. Forensic Science International: Genetics. 2015; 14: 125-131.

[8]J.-A. Bright, K.E. Stevenson, J.M. Curran and J.S. Buckleton, The variability in likelihood ratios due to different mechanisms. Forensic Science International: Genetics. 2015; 14:187-190.

[9]D.A. Taylor, J.-A. Bright and J.S. Buckleton, Considering relatives when assessing the evidential strength of mixed DNA profiles. Forensic Science International: Genetics. 2014; 13: 259-263.

[10]T.W. Bille, S.M. Weitz, M.D. Coble, J.S. Buckleton and J.-A. Bright, Comparison of the performance of different models for the interpretation of low level mixed DNA profiles. Electrophoresis. 2014; 35:3125-33.

[11]D.A. Taylor, J.-A. Bright and J.S. Buckleton, The ‘factor of two’ issue in mixed DNA profiles. Journal of Theoretical Biology. 2014; 363: p. 300-306.

[12]D.A. Taylor and J.S. Buckleton, Do low template DNA profiles have useful quantitative data? Forensic Science International: Genetics. 2015; 16:13-6.

[13]D.A. Taylor, J.S. Buckleton and I. Evett, Testing likelihood ratios produced from complex DNA profiles. Forensic Science International: Genetics. 2015; 16:165-171.

[14]S.J. Cooper, C.E. McGovern, J.-A. Bright, D.A. Taylor and J.S. Buckleton, Investigating a common approach to DNA profile interpretation using probabilistic software. Forensic Science International: Genetics. 2015; 16:121-131.

[15]J.-A. Bright, D.A. Taylor, C.E. McGovern, S.J. Cooper, L.J. Russell, D.V. Abarno and J.S. Buckleton, Developmental validation of STRmix™, expert software for the interpretation of forensic DNA profiles. Forensic Science International: Genetics. 2016; 23:226-239.

[16]D.A. Taylor, J.-A. Bright, C.E. McGovern, C. Hefford, T. Kalafut, J.S. Buckleton, Validating multiplexes for use in conjunction with modern interpretation strategies. Forensic Science International: Genetics. 2016;  20:6-19.

[17]D.A. Taylor, J.S. Buckleton, J.-A. Bright, Factors affecting peak height variability for short tandem repeat data.  Forensic Science International: Genetics. 2016;  21:126-133.

[18]T.R. Moretti, R.S. Just, S.C. Kehl, L.E. Willis, J.S. Buckleton, J.-A. Bright, D.A. Taylor, Internal validation of STRmix™ for the interpretation of single source and mixed DNA profiles.  Forensic Science International: Genetics. 2017;  29:126-144.

[19]D.A. Taylor, J.-A. Bright, H. Kelly, M.-H. Lin, J.S. Buckleton,  A fully continuous system of DNA profile evidence evaluation that can utilise STR profile data produced under different conditions within a single analysis.  Forensic Science International: Genetics. 2017;  31:149-154.

[20]D.A. Taylor, J.S. Buckleton, J.-A. Bright, Does the use of probabilistic genotyping change the way we should view sub-threshold data?  Australian Journal of Forensic Sciences. 2017;  49(1):78-92.

[21]J.-A. Bright, et al., Internal validation of STRmix; A multi laboratory response to PCAST. Forensic Science International: Genetics. 2018;  34:11-24.

[22]J.S. Buckleton, et al., The Probabilistic Genotyping Software STRmix: Utility and Evidence for its Validity. Journal of Forensic Sciences. 2019; 64(2): 393-405.

[23] D.A. Taylor, J.-A. Bright, J.S. Buckleton, Interpreting forensic DNA profiling evidence without specifying the number of contributors. Forensic Science International: Genetics. 2014; 13:269-80.

[24] D.A.Taylor, J.-A. Bright, J.S. Buckleton, J. Curran, An illustration of the effect of various sources of uncertainty on DNA likelihood ratio calculations. Forensic Science International: Genetics. 2014; 11:56-63.

[25] J.-A. Bright, M. Jones Dukes, S.N. Pugh, I.W. Evett, J.S. Buckleton, Applying calibration to LRs produced by a DNA interpretation software.  Australian Journal of Forensic Sciences. 2019; 1-7 https://doi.org/10.1080/00450618.2019.1682668(external link)

[26] J.-A. Bright, et al., STRmix™ collaborative exercise on DNA mixture interpretation.  Forensic Science International: Genetics. 2019; 40:1-8.

[27] H. Kelly, et al, A sensitivity analysis to determine the robustness of STRmix™ with respect to laboratory calibration. Forensic Science International: Genetics. 2018; 35:113-122.

[28] S. Noel, J. Noel, D. Granger, J.-F. Lefebvre, D. Seguin, STRmix™ put to the test: 300 000 non-contributor profiles compared to four-contributor DNA mixtures and the impact of replicates.  Forensic Science International: Genetics. 2019; 41:24-31.

[29] J.J.R.B. Rodriguez, J.-A. Bright, J.M. Salvador, R.P. Laude, M.C.A. De Ungria, Probabilistic approaches to interpreting two-person DNA mixtures from post-coital specimens. Forensic Science International. 2019; 300: 157-163.

[30] L. Russell, S. Cooper, R. Wivell, Z. Kerr, D. Taylor, J.S. Buckleton, J.-A. Bright, A guide to results and diagnostics within a STRmix™ report. Wiley Interdisciplinary Reviews: Forensic Science. 2019; 1:e1354.

[31] K.R. Dukes, S.P. Myers, Systematic evaluation of STRmix™ performance on degraded DNA profile data.  Forensic Science International: Genetics. 2020; 44: Article 102174.

[32] M.-H. Lin, J.A-. Bright, S.N. Pugh, J.S. Buckleton, The interpretation of mixed DNA profiles from a mother, father, and child trio. Forensic Science International: Genetics. 2020; 44: Article 102175.

[33] D. Taylor, J.-A. Bright, L. Scandrett, D. Abarno, S.-I. Lee, R. Wivell, H.Kelly, J. Buckleton, Validation of a top-down DNA profile analysis for database searching using a fully continuous probabilistic genotyping model.Forensic Science International: Genetics. 2021; 2021/05/01/;52:102479.

[34] C. McGovern, K. Cheng, H. Kelly, A. Ciecko, D. Taylor, J.S. Buckleton, et al., Performance of a method for weighting a range in the number of contributors in probabilistic genotyping. Forensic Science International: Genetics. 2020; 48:102352.

[35] J. Buckleton, D. Taylor, J.-A. Bright, T. Hicks, J. Curran, When evaluating DNA evidence within a likelihood ratio framework, should the propositions be exhaustive? Forensic Science International: Genetics. 2021;50:102406.

[36] J.-A.Bright, J. Buckleton, D. Taylor, Probabilistic interpretation of the Amelogenin locus. Forensic Science International: Genetics.  2021;52:102462.

[37] T. Hicks, Z. Kerr, S. Pugh, J.-A. Bright, J. Curran, D. Taylor, et al., Comparing multiple POI to DNA mixtures. Forensic Science International: Genetics. 2021; 52:102481.

[38] C. McGovern, K. Cheng, H. Kelly, A. Ciecko, D. Taylor, J.S. Buckleton, J.-A. Bright, Performance of a method for weighting a range in the number of contributors in probabilistic genotyping. Forensic Science International: Genetics. Volume 48, September 2020;102352.

[39] T. Bille, M.D. Coble, J.-A. Bright, Exploring the advantages of amplifying the entire extract versus splitting the extract and interpreting replicates using a continuous model of interpretation. Australian Journal of Forensic Sciences. 2021; https://doi. org/10.1080/00450618.2021.1882568.

[40] Taylor, J. Buckleton. Combining artificial neural network classification with fully continuous probabilistic genotyping to remove the need for an analytical threshold and electropherogram reading. Forensic Science International: Genetics Volume 62, January 2023, 102787.