From the team that brought you STRmix[™]

DBLR™ (database likelihood ratios) is an application designed for the rapid calculation of likelihood ratios (LRs) using STRmix[™] deconvolutions.

www.STRmix.com/dblr

DBLR

- AUTOMATED DIRECT MATCHING
- DIRECT MATCHING
- 5* EXPLORE DECONVOLUTION
- MIXTURE TO MIXTURE
- COMMON DONOR
- A SEARCH DATABASE
- SETTINGS
- SHOW RESULTS FOLDER

FAST DBLR^m calculates millions of *LR*s in seconds.

ACCESSIBLE DBLR[™] runs on a user's PC, without the need for high-performance computing.

ENABLING DBLR[™] enables you to get more value from your DNA evidence.

WITH DBLR[™] YOU WILL BE ABLE TO:

- Achieve superfast database searches.
- Visualise the value of your DNA mixture evidence.
- Undertake mixture to mixture matches.
- Determine whether there is a common donor between samples.
- Calculate any kinship relationship conceivable (now including modelling of linkage, mutation and F_{st}).
- Assign Kinship *LR*s for single source NGS profiles.

WHAT CAN DBLR™ DO?

- UNDERTAKE DIRECT COMPARISON of one or many components of a forensic DNA mixture to a database of known individuals (i.e. "Who contributed to the profile?").
- CARRY OUT FAMILIAL SEARCHING for a range of different relationships including siblings, half-siblings, parents, and children (i.e. "Is there a relative of the donor in the database?").
- SEARCH FOR COMMON CONTRIBUTORS between mixed DNA profiles (mixture to mixture comparisons). These LRs can be visualised using a heat map, and now include cluster graphs (New in DBLR[™] v1.2)
- **DETERMINE THE PROFILES** of the most likely contributors to a profile.
- VISUALISE THE VALUE of evidence by calculating expected LRs for one or many components of forensic DNA profiles for true and non-contributors using randomly generated individuals.
- MANAGE AUTOMATED SEARCHES for one or many DNA profiles against one or many databases of known individuals. Now includes direct matching between databases (New in DBLR[™] v1.2).
- MANAGE DATABASES of known contributors and STRmix[™] deconvolutions from unsolved casework for easy matching.
- COMBINE MULTIPLE EVIDENCE PROFILES under the assumption that there is a common contributor within the different samples (Common Donor).
- BUILD ANY PEDIGREE imaginable and calculate likelihood ratios given the different propositions (Kinship).
- **MODEL** linkage, mutation and F_{s_T} in the Kinship module (New in DBLR^m v1.2).
- ASSIGN LRs within the Kinship module for single source profiles containing both STR and SNP loci generated using Next Generation Sequencing (NGS) technology (New in DBLR[™] v1.2).
- PROTECT YOUR SETTINGS with a user defined password.

DBLR

Felarc.

HOW DOES DBLR[™] WORK?

DBLR[™] uses efficient algorithms for the fast calculation of LRs. With DBLR^M the user can import STRmix^{T'} deconvolutions or single source-profiles and visualise the value of the evidence or carry out fast database searches. The DBLR[™] Kinship function is both powerful and flexible. The user can load STRmix[™] deconvolutions or single-source profiles from known individuals and link these with one or more pedigrees. The Common Donor function can better resolve the genotypes of queried contributors and search these against a database to identify possible donors.

VALIDATION

DBLR[™] has been extensively validated by the STRmix[™] team based at ESR, New Zealand.

SPECIFICATIONS

DBLR[™] is designed to run standalone on an individual DNA analyst's PC. For guidance on hardware and software specifications please go to: www.strmix.com/dblr/specifications/

CERTIFICATION

The STRmix[™] team's quality management system is certified to AS/NZS ISO 9001:2015 by Telarc.

PUBLISHED DATA

The following papers describe the mathematics, validation and application of DBLR™:

- [1] Slooten K. Identifying common donors in DNA mixtures, with applications to database searches. Forensic Science International: Genetics 2017;26:40-7.
- [2] Kruijver M, Bright J-A, Kelly H, Buckleton J. Exploring the probative value of mixed DNA profiles. Forensic Science International: Genetics 2019;41: 1-10.
- [3] Bright J-A, Taylor D, Kerr Z, Buckleton J, Kruijver M. The efficacy of DNA mixture to mixture matching. Forensic Science International: Genetics 2019:41: 64-71.
- Taylor D, Rowe E, Kruijver M, Abarno D, Bright J-A, Buckleton J. Inter-sample contamination detection using mixture deconvolution comparison. Forensic Science International: Genetics 2019; 40: 160-167.
- [5] J.-A. Bright, M. Jones Dukes, S.N. Pugh, I.W. Evett, J.S. Buckleton, Applying calibration to LRs produced by a DNA interpretation software. Australian Journal of Forensic Sciences. 2019; 1-7.
- [6] Taylor D, Kruijver M. Combining evidence across multiple mixed DNA profiles for improved resolution of a donor when a common contributor can be assumed. Forensic Science International: Genetics 2020; 49.
- H. Kelly, Z. Kerr, K. Cheng, M. Kruijver, J.-A. Bright, Developmental [7] validation of a software implementation of a flexible framework for the assignment of likelihood ratios for forensic investigations. Forensic Science International: Reports. 2021; Volume 4, 100231 https://www.sciencedirect.com/science/article/pii/ S2665910721000621?via%3Dihub (external link)
- [8] M. Kruijver, D. Taylor, J.-A. Bright, Evaluating DNA evidence possibly involving multiple (mixed) samples, common donors and related contributors, Forensic Science International: Genetics. 2021; 54 https:// doi.org/10.1016/j.fsigen.2021.102532

CONTACT: For more information about DBLR[™] or for a quote please contact:

North/South/Central America Distributor:

Vic Meles NicheVision Inc. E: vic@nichevision.com T: +1-866-840-3758 (US Only)

UK/Europe/Rest of World:

Adam McCarthy T: +44(0)7590 405 501 E: Adam.Mccarthy@esr.cri.nz

• 9.00

• 3.00 Mix 10

Case

Υi×.

Mix

ase

9 ഹ

Ξ Mix Mix Mix Μi× Mix

 \sim

Heat map visualisation

50

40

30 -

20 -

10 -

٥

LRs for 1 common contributor

Log10 LR

	ID	Search Name	Profile Datab	ase	# Deconvolutions	# Matches	Date Matched
4	19	GlobalFiler threshol	ld 1 GF 1 million		1	22	31/01/2019 1:50
		Displaying 22/22 matches					
		Previous Matches	Deconvolution	Reference ID1	Reference ID2	LR	Log10 LR
		> 686	L1, K46K47K48_41	Random	77928	1.68308E+001	
		> 686	L1, K46K47K48_41	Random	78542	2.03703E+001	
		> 686	L1, K46K47K48_41	Random	112939	5.96656E+001	
		> 686	L1, K46K47K48_41	Random	156729	2.97958E+001	
		> 686	L1, K46K47K48_41	Random	221816	1.84802E+001	
		> 686	L1, K46K47K48_41	Random	298966	1.78186E+003	
		> 686	L1, K46K47K48_41	Random	307761	7.08068E+001	
		> 686	L1, K46K47K48_41	Random	333865	3.67859E+001	
		> 686	L1, K46K47K48_41	Random	345310	9.72803E+001	
		> 686	L1, K46K47K48_41	Random	377855	2.73390E+002	
		> 686	L1, K46K47K48_41	Random	507282	1.60982E+001	
		> 686	L1, K46K47K48_41	Random	527988	7.70232E+002	
		> 686	L1, K46K47K48_41	Random	555839	4.74342E+001	
		> 686	L1, K46K47K48_41	Random	602117	3.18974E+001	
		> 686	L1, K46K47K48_41	Random	609528	4.18578E+002	

INSTITUTE OF ENVIRONMENTAL SCIENCE AND **RESEARCH (ESR)**

ESR is New Zealand's Crown Research Institute specialising in science for communities. ESR uses world-leading science to safeguard our health, keep our communities safer, protect our food-based economy, and improve the health of our water and natural environment.

FORENSIC SCIENCE SA (FSSA)

FSSA provides services to some of South Australia's largest government departments and undertakes award-winning research in forensic science.

STRMIX LIMITED

STRmix Limited is a subsidiary of ESR, founded to better serve international users of STRmix[™].