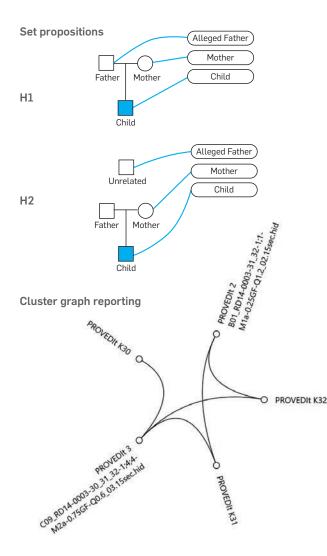
From the team that brought you STRmix™

DBLR[™] (database likelihood ratios) is an application designed for the rapid calculation of likelihood ratios (*LR*s) using STRmix[™] deconvolutions.


FAST DBLR^M calculates millions of *LR*s in seconds.

ACCESSIBLE DBLR[™] runs on a user's PC, without the need for high-performance computing.

ENABLING DBLR[™] enables you to get more value from your DNA evidence.

WITH DBLR™ YOU WILL BE ABLE TO:

- Achieve superfast database searches.
- Visualise the value of your DNA mixture evidence.
- · Undertake mixture to mixture matches.
- Determine whether there is a common donor between samples.
- Calculate any kinship relationship conceivable (including modelling of linkage, mutation and $\mathrm{F}_{\mathrm{ST}}).$
- Assign Kinship *LR*s for profiles.

www.STRmix.com/dblr

- ≈ AUTOMATED DIRECT MATCHING
- ≈ DIRECT MATCHING
- 1" EXPLORE DECONVOLUTION
- COMMON DONOR
- A SEARCH DATABASE
- SETTINGS
- SHOW RESULTS FOLDER

WHAT CAN DBLR™ DO?

- **OPTIONALLY INCLUDE** Amelogenin in the calculations.
- **APPLY POPULATION STRATIFICATION** in the Kinship, Search Database and Explore Deconvolution modules.
- **LEVERAGE PROBABILISTIC LINKS** within the Kinship module to probabilistically condition on the presence of a sample donor.
- UTILISE SEQUENCE BASED DATA from STRmix[™] NGS or a UAS Sample Details Report within the Kinship, Search Database and Explore Deconvolution modules.
- UNDERTAKE DIRECT COMPARISON of one or many components of a forensic DNA mixture to a database of known individuals (i.e. "Who contributed to the profile?").
- **CARRY OUT FAMILIAL SEARCHING** for a range of different relationships including siblings, half-siblings, parents, and children (i.e. "Is there a relative of the donor in the database?").
- **SEARCH FOR COMMON CONTRIBUTORS** between mixed DNA profiles (mixture to mixture comparisons). These *LR*s can be visualised using a heat map, and include cluster graphs.
- **DETERMINE THE PROFILES** of the most likely contributors to a profile.
- VISUALISE THE VALUE of evidence by calculating expected *LRs* for one or many components of forensic DNA profiles for true and non-contributors using randomly generated individuals.
- MANAGE AUTOMATED SEARCHES for one or many DNA profiles against one or many databases of known individuals. Includes direct matching between databases.
- MANAGE DATABASES of known contributors and STRmix[™] deconvolutions from unsolved casework for easy matching.
- **COMBINE MULTIPLE EVIDENCE PROFILES** under the assumption that there is a common contributor within the different samples (Common Donor).
- **BUILD ANY PEDIGREE** imaginable and calculate likelihood ratios given the different propositions (Kinship). Kinship pedigrees can now take sex into account.
- **MODEL** linkage, mutation and F_{st} in the Kinship module.
- **PROTECT YOUR SETTINGS** with a user defined password.
- CARRY OUT PRE-CHECKS within the Kinship module to check for inconsistencies between the pedigree and the samples. (New in $DBLR^{m}v1.5$)

HOW DOES DBLR™ WORK?

DBLR[™] uses efficient algorithms for the fast calculation of *LRs*. With DBLR[™] the user can import STRmix[™] deconvolutions or single source-profiles and visualise the value of the evidence or carry out fast database searches. The DBLR[™] Kinship function is both powerful and flexible. The user can load STRmix[™] deconvolutions or single-source profiles from known individuals and link these with one or more pedigrees. The Common Donor function can better resolve the genotypes of queried contributors and search these against a database to identify possible donors.

VALIDATION

DBLR^m has been extensively validated by the STRmix^m team based at ESR, New Zealand.

SPECIFICATIONS

DBLR[™] is designed to run standalone on an individual DNA analyst's PC. For guidance on hardware and software

specifications please go to:

www.strmix.com/dblr/specifications/

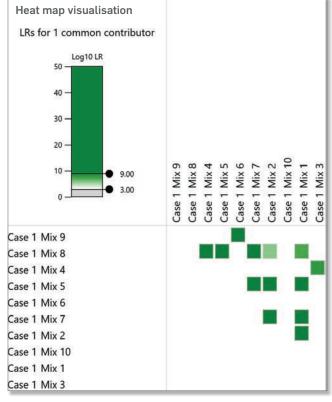
CERTIFICATION

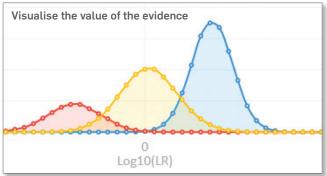
The STRmix team's quality management system is certified to ISO 9001:2015.

PUBLISHED DATA

The following papers describe the mathematics, validation and application of $\mathsf{DBLR}^{\texttt{M}}$:

- [1] Slooten K. Identifying common donors in DNA mixtures, with applications to database searches. Forensic Science International: Genetics 2017;26:40-7.
- [2] Kruijver M, Bright J-A, Kelly H, Buckleton J. Exploring the probative value of mixed DNA profiles. Forensic Science International: Genetics 2019;41: 1-10.
- [3] Bright J-A, Taylor D, Kerr Z, Buckleton J, Kruijver M. The efficacy of DNA mixture to mixture matching. Forensic Science International: Genetics 2019;41: 64-71.
- [4] Taylor D, Rowe E, Kruijver M, Abarno D, Bright J-A, Buckleton J. Inter-sample contamination detection using mixture deconvolution comparison. Forensic Science International: Genetics 2019; 40: 160-167.
- [5] J.-A. Bright, M. Jones Dukes, S.N. Pugh, I.W. Evett, J.S. Buckleton, Applying calibration to LRs produced by a DNA interpretation software. Australian Journal of Forensic Sciences. 2019; 1-7.
- [6] Taylor D, Kruijver M. Combining evidence across multiple mixed DNA profiles for improved resolution of a donor when a common contributor can be assumed. Forensic Science International: Genetics 2020; 49.
- [7] H. Kelly, Z. Kerr, K. Cheng, M. Kruijver, J.-A. Bright, Developmental validation of a software implementation of a flexible framework for the assignment of likelihood ratios for forensic investigations. Forensic Science International: Reports. 2021; Volume 4, 100231 https://doi.org/10.1016/j.fsir.2021.100231
 [8] M. Kruijver, D. Taylor, J.-A. Bright, Evaluating DNA evidence possibly involving multiple (mixed) samples, common donors and related contributors, Forensic Science International: Genetics. 2021; 54 https://doi.org/10.1016/j.fsir.2021.10231
- [9] Kruijver M, Kelly H, Bright J-A, Buckleton J. Evaluating DNA Mixtures with Contributors from Different Populations Using Probabilistic Genotyping. Genes. 2023; 14(1):40. <u>https://www.mdpi.com/2073-4425/14/1/40</u>
- [10] J. Bright, J. Buckleton, D. Taylor. Probabilistic interpretation of the Amelogenin locus. Forensic Science International: Genetics. 2021;52:102462
- [11] M. Kruijver, H. Kelly, D. Taylor, J Buckleton. Addressing uncertain assumptions in DNA evidence evaluation. Forensic Science International: Genetics. 2023; 66: 102913


CONTACT: For more information about DBLR[™] or for a quote please contact:


North/South/Central America Distributor:

Vic Meles NicheVision Inc. E: vic@nichevision.com T: +1-866-840-3758 (US Only)

UK/Europe/Rest of World:

Adam McCarthy T: +44(0)7590 405 501 E: adam.mccarthy@esr.cri.nz

a.	19	GlobalFiler thresho	ld 1 GF 1 million		1	22	31/01/2019 1:50
		Displaying 22/22 ma	tches				
		Previous Matches	Deconvolution	Reference ID1	Reference ID2	LR	Log10 LR
		> 686	L1, K46K47K48_41	Random	77928	1.68308E+001	
		> 686	L1, K46K47K48_41	Random	78542	2.03703E+001	
		> 686	L1, K46K47K48_41	Random	112939	5.96656E+001	
		> 686	L1, K46K47K48_41	Random	156729	2.97958E+001	
		> 686	L1, K46K47K48_41	Random	221816	1.84802E+001	
		> 686	L1, K46K47K48_41	Random	298966	1.78186E+003	
		> 686	L1, K46K47K48_41	Random	307761	7.08068E+001	
		> 686	L1, K46K47K48_41	Random	333865	3.67859E+001	
		> 686	L1, K46K47K48_41	Random	345310	9.72803E+001	
		> 686	L1, K46K47K48_41	Random	377855	2.73390E+002	
		> 686	L1, K46K47K48_41	Random	507282	1.60982E+001	
		> 686	L1, K46K47K48_41	Random	527988	7.70232E+002	
		> 686	L1, K46K47K48_41	Random	555839	4.74342E+001	
		> 686	L1, K46K47K48_41	Random	602117	3.18974E+001	
		> 686	L1, K46K47K48_41	Random	609528	4.18578E+002	
		> 686	L1, K46K47K48_41	Random	673195	4.43347E+001	

Matches

Date Matched

INSTITUTE OF ENVIRONMENTAL SCIENCE AND RESEARCH (ESR)

Profile Database

ESR is New Zealand's Crown Research Institute specialising in science for communities. ESR uses world-leading science to safeguard our health, keep our communities safer, protect our food-based economy, and improve the health of our water and natural environment.

FORENSIC SCIENCE SA (FSSA)

FSSA provides independent, expert scientific evidence, opinion and information to the justice system and carries out awardwinning research in forensic science.

STRMIX LIMITED

STRmix Limited is a subsidiary of ESR, founded to better serve international users of STRmix group software.